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plane as that of the impurity. The probability that the 
diffusing ion will exchange sites with a vacancy in an 
adjacent plane is then larger than that of the impurity-
vacancy exchange in the same basal plane. One may 
thus understand why the diffusion of gold in the parallel 
direction is faster than that in the perpendicular 
direction. 

If the diffusion in the perpendicular direction were 
entirely due to the nonbasal jumps of the gold tracer, 
then one may expect Du/Di~5.2 for zinc. The ratio of 
the diffusion coefficients Du/Dx in the temperature 
range of the experiment is approximately 3.3 within 

I. INTRODUCTION 

IN this paper, we investigate the effect of a Bloch wall 
on the spin wave excitation spectra in a canted anti-

ferromagnet such as N1F2. In this type of substance, the 
canting arises from the spin-orbit coupling under the 

FIG. 1. Crystal structure of NiF2. The circles and the squares 
represent the nickel and the fluorine ions, respectively. 
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±10%. This suggests that both types of the jumps are 
probably contributing to the perpendicular diffusion. 
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effect of the crystalline electric field. In Sec. V we obtain 
the allowed normal magnetic resonance modes and the 
dispersion equations for the bound wall excitations and 
the free spin wave excitations. The analogous ferro
magnetic and antiferromagnetic cases have been con
sidered by Boutron,1 Winter,2 and the author.3 In 
Sec. VI, we calculate the effective enhancement of the 
nuclear magnetic resonance signal caused by the bound 
wall excitations. This is similar to the enhancement 
factor obtained by Portis and Gossard4 for ferromag
netic substances and experimentally by Shulman5 for 
NiF2. 

II. FORMULATION OF THE PROBLEM 

The substance, NiF2, has a rutile-type crystal struc
ture with both corner and body-center cation sites. We 
consider the magnetic corner cation sites as being on 
sublattice A with index j and the magnetic body-center 
sites as being on sublattice B with index k as shown in 
Fig. 1. The magnetic properties of N1F2 have been con-

1 Mile. F. Boutron, Compt. Rend. 252, 3955 (1961). 
2 J. M. Winter, Phys. Rev. 124, 452 (1961). 
3 D . I. Paul, Phys. Rev. 126, 78 (1962). 
4A.|Portis and A. Gossard, Suppl. J. Appl. Phys. 31, 205S 

(1960). 
5 R. G. Schulman, Suppl. J. Appl. Phys. 32, 126S (1961). 
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We have obtained the allowed magnetic resonance modes or spin waves in the canted antiferromagnet 
NiF2 in the presence of a Bloch wall. Our formulation includes the anisotropy and exchange energies of the 
crystal together with characteristics of the wall such as its stiffness, mass, and viscosity. From the dispersion 
equations, we show that there exists a bound wall excitation branch having a lower excitation energy than 
the free spin wave excitation branch. Further, we have calculated the effective nuclear magnetic resonance 
field enhancement due to the bound wall excitation branch as a function of the parameters of the crystal 
and the Bloch wall and shown that our results are equivalent to those obtained experimentally. Finally, we 
compare this enhancement with that of a pure antiferromagnet—demonstrating that the canting is essential 
for this process. 
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FIG. 2. Diagram show
ing the varying X axis, 
the fixed z axis, and the 
angles of deviation 6 and 
<f> of the different sub-
lattice spins within and 
outside the Bloch wall. 

8* 

BLOCH WALL 

sidered in detail by Moriya.6 Using the spin Hamiltonian 

+Hk {D(sk*y+Ei(sk*¥- (sky)*]} (1) 

(where 7, the exchange energy is large compared to D, 
the anisotropy energy, and £, the canting term), 
Moriya has shown, among other things, that under 
static conditions and below the Neel temperature, the 
spins align in the plane perpendicular to the c axis and 
are approximately along the a or b axis. There is a net 
magnetic moment caused by a small canting of the 
different sublattice spins to each other in this plane. 

We postulate the existence of a Bloch wall (either 
from magnetostatic energy considerations or from 
lattice defects such as dislocations3'7 and consider the 
dynamic situation in the presence of such an environ
ment. As in references 3 and 6, we assume that the 
Bloch wall has a finite width determined from minimum 
energy considerations between the magnetic anisotropy 
and exchange energies of the crystal—the angle between 
adjacent spins changing slowly. Let 0 and 0 be the 
angles between the x axis and the static magnetization 
on sublattices A and B, respectively, and let us choose 
a new system of axes, X, F, and z, where X is the spin 
direction for the static magnetization and X and Y vary 
from atom to atom while z is not changed (see Fig. 2). 
Then the Hamiltonian becomes 

3C= / £y.* KS^s^+S^Sk7) cos(0*-0y) 

+ L * {D(sk*¥+Et(sk
xy- (sk

Y¥] cos20*}. (2) 

6 T . Moriya, Phys. Rev. 117, 635 (1960). 
7 1 . Jacobs and C. Bean, J.'Appl. Phys. 29, 537 (1958). 

III. STATIC CASE 

Our unperturbed energy or ground state is determined 
by placing Sy, Se, sy, and sz equal to zero, and Sx and 
sx equal to S. Moriya has minimized the Hamiltonian 
given by Eq. (1) as a function of the angle between the 
two different magnetic spins, (assumed, however, to be 
on the same lattice site). He obtains his Eq. (5.3), i.e., 

tan(<£-0)= - (E/4J9.sin(0+0). 

For E/J small, this reduces to 

0=0+7T+ (E/4J) sin20. (3) 

Thus, substituting for cj)k and expanding 6k about the 
position j , we get for the ground-state energy, 

3Co=E^ {SJS2+4JS2a2(dd/dz)2 

-(E2S2/4J) sin220}, (4) 

where the summation, i, is now over all lattice sites and 
where a is one-half the unit cell lattice distance in the z 
direction. Upon minimizing Eq. (4) with respect to 0, 
we obtain the useful relation, 

{36/dz)2« (E/AJa)2 cos220. (5) 

For a 90° wall, this equation integrates to 

sin20=-tanh-(2As), (6) 

where h — E/^Ja and is the inverse of the wall thickness 
in agreement with Moriya's results. 

IV. EQUATIONS OF MOTION 

When the Bloch wall is subject to perturbations, it 
exhibits stiffness, inertia, and viscosity caused by both 
the interaction of the wall with imperfections in the 
material and by magnetic effects of the material itself. 
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As shown in references 2 and 3, these additional energy 
contributions for the stiffness and inertia can be 
represented by the terms 

K'ULi (s/y+Y.** fe1?] (7) 
and 

MLZJ ( 5 / ) J + E * (^)21 (8) 

respectively, while the viscosity may be represented 
phenomenologically as 

ft(dS/<tt)vise= -T1Sj
YeY-T2Sj

zez 

and 

fi(dSj/dt)ViS0= —T1sk
YeY-T2Skze2. (9) 

The equations of motion are given by the formulas 

fft(dSy/A) = [Sy,3C], (10a) 
iti (dsk/dt) = [s*,5C], (10b) 

where 3C is the total Hamiltonian given by Eqs. (2), 
(7), and (8) after placing the linear terms equal to zero 
by the minimization condition. [We add Eqs. (9) 
directly to Eqs. (10) to obtain complete expressions.] 
If, in Eq. (10a), we expand s& about the position j and, 
in Eq. (10b), we expand Sy about the position k, and 
keep only second-order terms (valid for long wave
lengths), we get, using Eq. (5) and the commutation 
relations, 

dSY/dt= (ZJS+WSCPV^SU-TXSY 

+ (SJS+2DS+2MS+2ES cos2d)Sz, (11a) 

dsY/dt= (SJS+USa2V2)S;-r1sY+L8JS+2DS 

+2MS-2ES cos20+ (SE2/J) sin220>2, ( l ib) 

dS,/dt= (SJS+4:JSa2V2)sY-T2Sz 

- (SJS+4ES C O S 2 0 + 2 J T S ) S F , (He) 

dsz/dt= (SJS+4JSa2V2)SY-T2sz-lSJS+2KfS 

- 4 E S cos20+ (2SE2/J) sin220>F. ( l id) 

Neglecting small terms and recognizing that Kr, the 
stiffness, is small compared to the anisotropy D, 
Eqs. (11) can be solved for SY. 

We recognize, from the excitation spectra in the 
absence of a Bloch wall obtained by Moriya6 and by the 
author,3 that there will be two excitation spectra—one 
of high energy (w2^DJ) and one of low energy 
(w2^KfJ or E2). For the high-energy case, Eqs. (11) 
yield the approximate relation 

l(w1w2)
2-32S2J(D+M)(w1w2+64J2S2a2V2) 

+ 12Swlw2J
2a2S2V2lSY=0. (12a) 

In this case, the energy of the excitations is sufficiently 
high so that we have been able to neglect the additional 
trigonometric terms coming from the presence of the 
Bloch wall without appreciably altering the energy 
level of the excitations. The solutions can be written 

immediately, i.e., 

SY=SY
Q tx^{i{k xx-\-kyy+kzz)~] (13a) 

and 
w1w2~32JS2(D+M)+64J2S2k2a2, (14a) 

where 

w2—iiw—iY2. 

For the more interesting low-energy case, we obtain 
the equation 

(wiw2+16£252 cos40-32iTj rS2 

+64J2S2a2V2)SY=0. (12b) 
In the next section, we consider the solutions to this 
low-energy case. 

V. SOLUTIONS 

If we substitute u— — sin20 in Eq. (12) and let 

SY=SY{z) e x p p ^ - f - ^ ) ] , (13b) 

we get the associated Legendre equation 

(1 - O (d2SY/du2) - 2u (dSY/du) 

+ [2 - (m 2 / [ l - ^ 2 ] ) ]S r=0 , 
where 

w1w2^32JK,S2+16E2S2(l~m2)+64:J2S2ki
2a2 (14b) 

and 

r^X. — f i x I fiy • 

Thus, the solutions to Eq. (12b) are 

Sr(*) = Sr°Pi™M, (15) 
which for a 90° wall can be written as 

SY (z) = SY°e2mh2ltsaih (2hz) - m~], (16) 

The only regular solutions with regular derivatives 
occur when m2 is equal to one, or is equal to or less than 
zero. 

(a) m2=l: Then, SY(z) equals 5F° cos20. For a 90° 
wall, 6 varies from approximately 45° at z— — co to 
135° at z= oo ? almost all of the change occurring within 
the region \z\ <hrl. Thus, this is a bound or wall excita
tion mode—its amplitude being essentially zero outside 
of the wall. The dispersion relations are obtained by 
putting m2 equal to one in Eqs. (14b). We note that 
when the stiffness, K\ is equal to zero, the excitation 
branch given by Eq. (14b) has a wall resonance of zero 
energy. The solutions corresponding to Eq. (14b) for m2 

equal to one represent translations, As, of the Bloch 
wall. 

(£>) m2<0: For m equal to zero, our solution for 
SY(z) is SV° sin20. This wave function has its maximum 
values outside the Bloch wall at 0=45° and 135° and 
goes to zero at the center of the wall, corresponding to 
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the first free spin wave state of the system. The disper
sion relation is obtained by putting m equal to zero in Eq. 
(14b). All other solutions, represented by m2 being less 
than zero, form, together with m equal to zero, a free 
spin wave excitation branch. For the dispersion relation 
given by Eq. (14b), the bottom of the free spin wave 
excitation branch is higher than the wall excitation 
branch due to the extra term 16S2E2. As we would 
expect, it is easier to excite the modes corresponding to 
a translation of the wall than the free spin wave modes. 
For the higher energy expression given by Eq. (14a), 
the difference between the bound and wall excitation 
spectra is small. These results are shown graphically 
in Fig. 3. 

Further, knowing 5V, we can obtain our spin coordi
nate wave functions from Eqs. (11), (12), and (14). For 
the more interesting lower resonance frequency given 
by Eq. (14b), we get, for our normal resonance modes, 
the relations 

SY=\ 1+ 
£cos20 K' Es cos20 sin220 n 

iw^Si 

L 2 / 4 / 2/2(3£ cos20+D+M) 

r £?S/ 7Ecos20+D+M \ 
= ( cos220 sin220 ) 

L J \ 3£ cos20+D+M I 

J Y, 

rE2Sf 
iW2Se=\ ( COS220— 

IE co$20+D+M 
in220j 

3E cos20+D+M 

-IK'S-USctoj? IsV. (17) 

We note that, for this resonance branch, the z com
ponents of the spin are very much smaller than the Y 
components while the major difference between Sy and 
sy arises from the canting constant E. 

VI. EXTERNAL MAGNETIC FIELD 

We now calculate the amount of excitation of the 
bound Bloch wall resonance mode by an external nuclear 
magnetic resonance signal. This excitation, correspond
ing to motion of the Bloch wall, will act as an effective 
field on the nuclei through the nuclear hyperfine inter
action, causing an apparent enhancement of the applied 
field. The major part of the effective field acting on the 
nuclei from the hyperfine interaction 

3e»=i4l-S, (18) 

corresponding to the nuclear magnetic resonance signal, 
is given by the term SY or SY which yield fluctuations in 
the hyperfine interaction perpendicular to the X or 
static spin direction. Thus, for a given nuclear magnetic 

<s/32DJS2 

-v/32K'0S2 + 16E2S2 < 

V ^ 3 2 K ' J S 2 

I 

2 

>S 1 

> k 

FIG. 3. Graph of allowed spin wave excitation branches for NiF2 
in the presence of a 90° Bloch wall. Curve 1 is the bound wall state, 
while curve 2 represents the lowest value for the free spin wave 
state for the lower energy excitation branch of Eq. (14b). Curve 3 
is the approximate excitation spectrum for the high-energy mode 
given by Eq. (14a). 

resonance signal, H coswô , the effective field acting on 
the Y component of the nuclear magnetic moment, 
fiyjY, is 

Noting that the hyperfine interaction constant, 
(AS~fiwo), has a frequency of 51.2 Mc/sec,5 we get 
#eff^2.5X104Sy. 

To calculate SY under the application of an external 
nuclear magnetic resonance signal, we apply the 
formulas 

(<ZSAft)ext=Ye(SXH), 

(&AB)«t=Y.(8XH), (20) 

where H, the external resonance field, shall be in the y 
direction, i.e., 

H= (H sindex+H cos0ey) exp(tw00> (21a) 

for sublattice A, and 

H= (H sm^ex+H cos<£ey) exp(^W), (21b) 

for sublattice B. Then, using Eq. (3), our fundamental 
Eqs. (lie) and (lid) are modified to read 

dSz/dt= (SJS+4JSa?V2)sY-T2SZ'- (SJS+2K'S 
+AES cos26)SY-y eSH sin0 exp(iwoO, (He) 

ds,/dt= (SJS+4:JSa2V2)SY-T2Sz-lSJS+2KfS 
-4:ES cos20+ (2SE2/J) sin220>r 

+yeSH[sm$+ (£/4/)cos0 sin20] exp(iw0t), (1 If) 

while Eqs. (11a) and (lib) remain the same. 
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Following the methods used in Sees. IV and V, this 
set of inhomogeneous equations yields for Sy 

d2Sy dSy f m^ \ 
(I-**2) 2u + ( 2 )Sy 

du2 du \ \—u2l 

f(e)fiyeH 
= ; -, (22) 

16E(l-u2) 
where 

+32K'JS21/16E2S2, (23) 
and 

/(0) = 3sin30-sin0. (24) 

We are interested in the excitation of the uniform bound 
wall mode given by Sy=Sy1Pi1(u)) where u equals 
— sin20, P^{u) equals cos20, and 6 varies from 45° to 
135°, (u varying from —T to 1). Thus, we expand Sy 
in terms of the normal modes of the system, 

YlmSY™Pl™{u). 

(We note that any other terms needed to form a com
plete set will have very small amplitudes since the 
driving force, H, is small—therefore, essentially, excit
ing only the resonance modes.) Substituting for Sy in 
Eq. (22), we get 

Pim(u) f(u) 
ZmSY^(m2-mQ

2) = . (25) 
1-u2 \-u2 

Using the orthogonality relationship, 

r 1 Pi w Pi w («) 1 ( 1 + w ) ! 
/ du= —5nm, (26) 

y_i 1—u2 m (l—m)l 

the excitation of the bound state, iY(^)> is given by 
the equation 

Sy* = / — —du. (27) 
32E(l-mQ

2) J_i 1-u2 

Substituting Eqs. (23) and (24) into Eq. (27) and 
integrating, we obtain for the amplitude of the bound 
state excitation 

(2Y/2fiyeHES2 

SYI= . (28) 
32K'JS2+ (Tx+ftwo) (IVWAwo) 

(19), the effective nuclear magnetic resonance field as 
seen by the nuclei in the Bloch wall, is 

Hei^iSXlO-^/K')!!^. (29) 

The stiffness parameter, K', is structure sensitive. 

Values between 10~18 and 5X10 - 2 0 erg/atom do not 
appear incompatable with data2,8 for iron powder and 
nickel oxide. Thus, in this case, the nuclear magnetic 
resonance enhancement factor Heu/Hex.t may vary 
from 5 to 100. The experimental value of approximately 
50 observed by Shulman5 falls within this range. 

The effect of the bound excitation spectrum on the 
nuclear magnetic resonance linewidths is similar to that 
calculated by the author9 for pure antiferromagnets. 

VII. ANTIFERROMAGNETS WITHOUT CANTING 

Finally, we show that an antiferromagnet without 
canting does not yield any enhancement of the external 
nuclear magnetic resonance signal. That this is not 
obvious stems from the fact than an antiferromagnetic 
substance is not magnetically inert in the presence of 
an external magnetic field—at least one of the sub-
lattices being in an unfavorable energy position, and 
that the energy of the bound wall state is one of the 
same order of magnitude as that for the canted NiF2. 

The normal resonance modes for the free spin wave 
and bound wall excitations in the presence of a 180° 
Bloch wall have been calculated by the author3 for a 
pure antiferromagnetic crystal possessing orthorhombic 
magnetic spin symmetry—the two types of spins being 
on two interpenetrating sublattices. Using Eqs. (20) 
and (21) above and Eqs. (10) and (11) of reference 3 
[corresponding to our Eqs. (11)3, we find that it is not 
possible to excite (to first order) the low-energy wall 
excitation given by Eq. (18) of this reference, [equiva
lent to our Eq. (14b) with m2 equal to one]. Instead, 
only the high-energy wall excitation given by Eq. (22) 
[equivalent to our Eq. (14a)] is excited. The equation 
for SY. is, therefore, of the form 

Sy^(fi7e/12J)He^. (30) 

We note that Sy1 for the antiferromagnetic case is less 
than that for the canted spin arrangement by the factor, 
K'/E, which is less than 0.01. Thus, the magnetic field 
enhancement is dependent on the canting of the spins. 
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